• 0 أصوات - بمعدل 0
  • 1
  • 2
  • 3
  • 4
  • 5
الرياضيات#3
#1
[صورة: Mathematic_World.jpg]



الرياضيات البحتة والتطبيقية، وعلم الجمال
تنشأ الرياضيات من العديد من أنواع المسائل المختلفة. في البداية وجدت هذه في التجارة، وقياس الأراضي، والهندسة المعمارية وعلم الفلك في وقت لاحق؛ اليوم، تشير جميع العلوم إلى المسائل التي يدرسها علماء الرياضيات، وتنشأ العديد من المسائل داخل الرياضيات نفسها. على سبيل المثال، اخترع الفيزيائي ريتشارد فاينمان صياغة متكاملة لميكانيكا الكم باستخدام مزيج من المنطق الرياضي والبصيرة الفيزيائية، وهناك نظرية الأوتار أيضًا، وهي نظرية علمية لا تزال قيد التطور تحاول توحيد القوى الأساسية الأربعة للطبيعة، لا تزال تلهم المزيد من التطوير في الرياضيات الجديدة.
بعض مجالات الرياضيات ذات صلة فقط في المجال الذي تتعامل معه، ويتم تطبيقها لحل المزيد من المسائل في هذا المجال. ولكن غالبًا ما تثبت الرياضيات المستوحاة من مجال واحد أنها مفيدة في العديد من المجالات، وتنضم إلى المجموعة العامة من المفاهيم الرياضية. غالبًا ما يتم التمييز بين الرياضيات البحتة والرياضيات التطبيقية. ومع ذلك، غالبًا ما تتحول موضوعات الرياضيات البحتة إلى تطبيقات، على سبيل المثال نظرية الأعداد في التشفير. هذه الحقيقة الرائعة، وهي أن الرياضيات «البحتة» غالبًا ما تتحول إلى تطبيقات عملية، هو ما أسماه يوجين ويغنر «الفعالية غير المعقولة للرياضيات». كما هو الحال في معظم مجالات الدراسة، أدى انفجار المعرفة في العصر العلمي إلى التخصص؛ حيث يوجد الآن المئات من المجالات المتخصصة في الرياضيات وأحدث تصنيف لمواد الرياضيات يصل إلى 46 صفحة. دمجت العديد من مجالات الرياضيات التطبيقية مع التقاليد ذات الصلة خارج الرياضيات وأصبحت التخصصات في حد ذاتها، بما في ذلك الإحصاءات، وبحوث العمليات، وعلوم الحاسوب.
بالنسبة لأولئك الذين يميلون رياضيا، غالبا ما يكون هناك جانب جمالي محدد لكثير من الرياضيات. يتحدث العديد من علماء الرياضيات عن أناقة الرياضيات، وعلم الجمال الداخلي والجمال الداخلي. تقدر البساطة والعمومية. هناك جمال في دليل بسيط وأنيق، مثل دليل إقليدس على وجود عدد لا نهائي من الأعداد الأولية، وبأسلوب عددي أنيق يسرع الحساب، مثل تحويل فورييه السريع. أعرب غودفري هارولد هاردي في مقالته دفاع رياضياتي عن اعتقاده بأن هذه الاعتبارات الجمالية كافية بحد ذاتها لتبرير دراسة الرياضيات البحتة. حدد معايير مثل الأهمية وعدم اليقين والحتمية والاقتصاد كعوامل تسهم في جمالية رياضية. غالبًا ما يبحث البحث الرياضي عن ميزات مهمة لكائن رياضي. إن النظرية التي يتم التعبير عنها كتوصيف للكائن بهذه الميزات هي الجائزة.
شعبية الرياضيات المسلية سواء في حل الألغاز الرياضية أو الألعاب. هي علامة أخرى على المتعة التي يجدها الكثيرون في حل الأسئلة الرياضية. وعلى الطرف الاجتماعي الآخر، لا يزال الفلاسفة يجدون مسائل في فلسفة الرياضيات، مثل طبيعة البرهان الرياضي.
التدوين الرياضي، والدقة
معظم الرموز الرياضية المستخدمة اليوم لم يتم اختراعها حتى القرن السادس عشر. قبل ذلك، تم كتابة الرياضيات بالكلمات، مما يحد من الاكتشافات الرياضية. كان أويلر (1707-1783) مسؤولًا عن العديد من الرموز المستخدمة اليوم. التدوين الحديث يجعل الرياضيات أسهل بكثير بالنسبة للمحترفين، ولكن المبتدئين غالبا ما يجدونها شاقة. وفقا لباربرا أوكلي، يمكن أن يعزى ذلك إلى حقيقة أن الأفكار الرياضية هي أكثر تجريدية وأكثر تشفيرًا من أفكار اللغة الطبيعية.(6) على عكس اللغة الطبيعية، حيث يمكن للناس في كثير من الأحيان مساواة كلمة (مثل الشجرة) مع الشيء المادي الذي تقابله، فإن الرموز الرياضية مجردة، وتفتقر إلى أي تناظرية مادية.(7) الرموز الرياضية مشفرة أيضًا بدرجة أكبر من الكلمات العادية، مما يعني أن الرمز الواحد يمكن أن يشفر عددًا من العمليات أو الأفكار المختلفة.(8)
قد يصعب فهم اللغة الرياضية بالنسبة للمبتدئين لأن المصطلحات الشائعة، مثل أو فقط، لها معنى أكثر دقة من المصطلحات المستخدمة في الكلام اليومي، بينما تشير المصطلحات الأخرى مثل «فتح» و«حقل» إلى أفكار رياضية محددة، لا تغطيها معاني العلمانيين. تتضمن اللغة الرياضية أيضًا العديد من المصطلحات الفنية مثل التجانس التماثلي والتكامل الذي لا معنى له خارج الرياضيات. بالإضافة إلى ذلك، تنتمي العبارات المختصرة مثل "iff" ل«إذا وفقط إذا» إلى المصطلحات الرياضية. هناك سبب للتدوين الخاص والمفردات الفنية: تتطلب الرياضيات دقة أكثر من الكلام اليومي. يشير علماء الرياضيات إلى هذه الدقة في اللغة والمنطق باسم «الصرامة».
البرهان الرياضي هو في الأساس مسألة صرامة. يريد علماء الرياضيات أن تتبع نظرياتهم من البديهيات عن طريق التفكير المنهجي. هذا هو تجنب «النظريات» الخاطئة، القائمة على الحدس الخاطئ، والتي حدثت العديد من الحالات في تاريخ الموضوع. تباين مستوى الصرامة المتوقعة في الرياضيات بمرور الوقت: توقع اليونانيون حججًا مفصلة، لكن في زمن إسحاق نيوتن كانت الأساليب المستخدمة أقل صرامة. المشاكل الكامنة في التعاريف التي يستخدمها نيوتن ستؤدي إلى عودة التحليل الدقيق والدليل الرسمي في القرن التاسع عشر. سوء الفهم للدقة هو سبب لبعض المفاهيم الخاطئة الشائعة في الرياضيات. اليوم، يواصل علماء الرياضيات الجدال فيما بينهم حول البراهين المدعومة بالحاسوب. نظرًا لأنه يصعب التحقق من الحسابات الكبيرة، فقد لا تكون هذه الأدلة دقيقة بدرجة كافية.(9)
البديهيات في الفكر التقليدي كانت «حقائق بديهية»، ولكن هذا المفهوم إشكالي. على المستوى الرسمي، البديهية هي مجرد سلسلة من الرموز، التي لها معنى جوهري فقط في سياق جميع الصيغ المشتقة من نظام البديهية. كان هدف برنامج هيلبرت وضع جميع الرياضيات على أساس بديهي ثابت، ولكن وفقًا لمبرهنات عدم الاكتمال لغودل، كل نظام بديهي (قوي بما فيه الكفاية) له صيغ غير قابلة للبرهان؛ وبالتالي فإن البديهية النهائية للرياضيات أمر مستحيل. ومع ذلك، غالبًا ما يُتخيل أن الرياضيات (بقدر محتواها الرسمي) ليست سوى نظرية ثابتة في بعض البديهيات، بمعنى أن كل بيان رياضي أو دليل يمكن أن يُطرح في صيغ ضمن نظرية المجموعات.(10)
مجالات الرياضيات
وبشكل عام، يمكن تقسيم الرياضيات إلى دراسة الكمية والبنية والفضاء والتغيير (أي الحساب والجبر والهندسة والتحليل). بالإضافة إلى هذه الشواغل الرئيسية، هناك أيضًا أقسام فرعية مخصصة لاستكشاف الروابط من الرياضيات البحتة إلى مجالات أخرى: إلى المنطق، ونظرية المجموعات (الأسس)، والرياضيات التجريبية لمختلف العلوم (الرياضيات التطبيقية)، ومؤخرًا لدراسة صارمة لمواضيع الارتياب. على الرغم من أن بعض المواضيع قد تبدو غير ذات صلة، فقد وجد برنامج لانجلاندز روابط بين المواضيع التي كان يعتقد في السابق أنها غير مرتبطة، مثل زمرة غالوا، وسطح ريمان ونظرية الأعداد.
أيضا تجمع الرياضيات المتقطعة بشكل تقليدي مجالات الرياضيات التي تدرس الهياكل الرياضية المنفصلة بشكل أساسي بدلاً من الاتصال المستمر.
أسس وفلسفة الرياضيات
من أجل توضيح أسس الرياضيات، تم تطوير مجالات المنطق الرياضي ونظرية المجموعات. يتضمن المنطق الرياضي الدراسة الرياضية للمنطق وتطبيقات المنطق الرسمي في مجالات أخرى من الرياضيات؛ نظرية المجموعات هي فرع الرياضيات الذي يدرس مجموعات أو مجموعات من الأشياء. نظرية الأصناف، التي تتعامل بطريقة مجردة مع الهياكل الرياضية والعلاقات بينهما، لا تزال قيد التطوير. تصف عبارة «أزمة الأسس» البحث عن أساس صارم للرياضيات التي حدثت في الفترة من عام 1900 إلى 1930 تقريبًا. يستمر بعض الخلاف حول أسس الرياضيات حتى يومنا هذا. تم حفز أزمة المؤسسات من قبل عدد من الخلافات في ذلك الوقت، بما في ذلك الجدل حول مبرهنة كانتور وجدل بروير-هيلبرت.
يهتم المنطق الرياضي بإعداد الرياضيات ضمن إطار بديهي صارم، ودراسة الآثار المترتبة على هذا الإطار. على هذا النحو، تعد موطنًا لمبرهنات عدم الاكتمال لغودل التي تعني -بشكل غير رسمي- (أن أي نظرية مولدة بشكل كفء قادرة على التعبير عن الحساب الابتدائي لا يمكن أن تكون كاملة وراسخة في وقت واحد. على وجه الخصوص، من أجل أي نظرية راسخة مولدة بشكل كفء والتي تبرهن حقيقة حسابية بسيطة، فإنه يوجد عبارة حسابية تكون محققة ولكنها غير مبرهنة بالنظرية). فقد أوضح غودل كيفية بناء بيان رسمي يمثل حقيقة نظرية للأعداد، ولكنه لا يتبع تلك البديهيات. لذلك، لا يوجد نظام رسمي هو البديهية الكاملة لنظرية الأعداد الكاملة. ينقسم المنطق الحديث إلى نظرية الحاسوبية، نظرية النموذج، ونظرية البرهان، ويرتبط ارتباطًا وثيقًا بعلوم الحاسوب النظرية، وكذلك بنظرية الأصناف. في سياق نظرية الحاسوبية.
تتضمن علوم الحاسوب النظرية نظرية الحوسبة ونظرية التعقيد الحسابي ونظرية المعلومات. تبحث نظرية الحوسبة في قيود النماذج النظرية المختلفة للحاسوب، بما في ذلك النموذج الأكثر شهرة (آلة تورنغ). نظرية التعقيد الحسابي هي دراسة قابلية التتبع بواسطة الحاسوب؛ بعض المسائل، على الرغم من أنها قابلة للحل من الناحية النظرية بواسطة الحاسوب، فهي مكلفة للغاية من حيث الوقت أو المساحة بحيث يحتمل أن تظل حلها غير ممكنة من الناحية العملية، حتى مع التقدم السريع لأجهزة الحاسوب. والمسألة الشهيرة هي «مسألة P = NP؟»، واحدة من جائزة مسائل الألفية. أخيرًا، تهتم نظرية المعلومات بكمية البيانات التي يمكن تخزينها على وسيط معين، وبالتالي تتعامل مع مفاهيم مثل الضغط والاعتلاج.



  مشاركة الموضوع


المواضيع المحتمل أن تكون متشابهة .
الموضوع : الكاتب الردود : المشاهدات : آخر رد
 
  • من هو اول من اكتشف الرياضيات؟
  • _Ammar
  • 0
  • 262 25-11-2023, 12:43 PM
    آخر رد: _Ammar
     
  • الرياضيات المالية
  • Bskowet
  • 0
  • 255 09-10-2023, 06:11 AM
    آخر رد: Bskowet
     
  • الرياضيات#4
  • Bskowet
  • 2
  • 892 05-06-2023, 07:32 AM
    آخر رد: Bskowet
     
  • الرياضيات#2
  • Bskowet
  • 0
  • 354 03-06-2023, 08:31 PM
    آخر رد: Bskowet
     
  • الرياضيات
  • Bskowet
  • 0
  • 341 03-06-2023, 04:31 PM
    آخر رد: Bskowet

    التنقل السريع :


    يقوم بقراءة الموضوع: بالاضافة الى ( 1 ) ضيف كريم